

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

SC_CC

Service Connector Cache Coherency

SC Cache Coherency Model

SC_CC-V1.3_E (Version V1.3)

This document describes the SC Cache Coherency Model.

Page ii SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Ownership

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Copyright © 2012 STABILIT Informatik AG, Switzerland

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the

License.

All other logos, product names are trademarks of their respective owners.

This Document has been created with Microsoft Word 2003 (11) with template file

C:\STABILIT\STANDARD\TEMPLATES\S_REP_E.DOT and printed at 10 October 2012

08:56.

SC_CC Page iii

Service Connector Cache Coherency SC_CC-V1.3_E

Identification V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

Identification

Project: SC_CC

Title: Service Connector Cache Coherency

Subtitle: SC Cache Coherency Model

Version: V1.3

Reference: SC_CC-V1.3_E

Classification: Public

Keywords: Architecture, Cache Concept, Coherency Model

Comment: This document describes the SC Cache Coherency Model.

Author(s): STABILIT Informatik AG

Joël Traber

Approval

(Reviewed by):
Signature .. Jan Trnka

Audience: Project team, Review team

Distribution: Public

Filename c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Revision History

Date Version Author Description

10.05.2012 D1.0 Joël Traber Initial draft

12.06.2012 V1.0 Joël Traber Change cache structure, appendix messages (SIX requirements).

One cache per SC only

02.07.2012 V1.1 Jan Trnka Preliminary document valid for the offer

16.08.2012 V1.1 Joël Traber Description of Cache Structure. Add final version off SC Client

API. Describe introduced header fields with SCMP V1.3.

31.08.2012 V1.2 Joël Traber Value “static” for caching method not possible. Unset caching

method or empty string makes data static (unmanaged).

09.10.2012 V1.3 Joël Traber Complete chapter Configuration of Cache-Guardian.

SC_CC Page 1

Service Connector Cache Coherency SC_CC-V1.3_E

Table of Contents V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

Table of Contents

1 PREFACE ... 3

1.1 Purpose & Scope of this Document ... 3

1.2 Definitions & Abbreviations .. 3

1.3 External References ... 3

1.4 Typographical Conventions ... 3

1.5 Outstanding Issues ... 3

2 INTRODUCTION .. 4

2.1 Cache coherence problem .. 4

3 CACHE COHERENCE MODEL ... 5

3.1 Cache Coherence ... 5

3.1.1 Fundamental caching concept .. 5

3.1.2 Cache-Guardian .. 7

3.1.3 Interacting with the cache ... 7

3.1.4 SCMP Version 1.3 .. 8

3.1.5 Caching identifiers .. 8

3.1.6 Clear managed data in cache .. 8

4 CACHE COHERENCE - SC CLIENT API ... 9

4.1 SC Client API – Cache Coherence .. 9

4.2 SC Client API – Loading of large messages .. 10

5 MONITORING AND TROUBLESHOOTING ... 11

5.1 Cache Coherence Logging ... 11

5.2 Cache Coherence Monitor ... 11

6 CONFIGURATION OF CACHE-GUARDIAN... 12

6.1 Cache-Guardian Configuration .. 12

6.1.1 Configuration for Cache-Guardian ... 12

6.1.2 Configuration for cascaded Cache-Guardian (on SC proxy) 12

7 BEST PRACTICE .. 13

7.1 Proper separation of static and managed data .. 13

7.2 Use of the subscription mask ... 13

8 GLOSSARY ... 14

APPENDIX .. 15

INDEX ... 16

Tables

Table 1 Abbreviations & Definitions ... 3

Table 2 External references .. 3

Table 3 Typographical conventions ... 3

Page 2 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Table of Contents

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Figures

Figure 1 Topology & Caching in Service Connector ... 4

Figure 2 Cache Coherence Model .. 5

Figure 3 Caching Concept – Caching data ... 6

Figure 4 Caching Concept – Sending appendix and remove ... 6

Figure 5 Structure of caching identifiers .. 8

Figure 6 SCMessage - Class Diagram ... 10

Figure 7 WebUI - Cache Overview ... 11

SC_CC Page 3

Service Connector Cache Coherency SC_CC-V1.3_E

Preface V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

1 Preface

1.1 Purpose & Scope of this Document

This document describes the SC-CC Service Connector Cache Coherency Model.

This version serves as basis for the implementation contract. The final version of this document

will be integrated into Service Connector documentation.

This document is particularly important to all project team members and serves as

communication medium between them.

1.2 Definitions & Abbreviations

Item / Term Definition / Description

HTTP Hypertext Transport Protocol

HTTPS HTTP over SSL, encrypted and authenticated transport protocol

Table 1 Abbreviations & Definitions

1.3 External References

References Item / Reference to other Document

[1] SC_0_Specification_E – Requirement and Specifications for Service Connector

[2] SC_0_SCMP_E – SC Message Protocol V1.2

[3] SC_4_Operation_E – Configuration and Operation Guide

[4]

Table 2 External references

1.4 Typographical Conventions

Convention Meaning

text in italics Features not implemented in the actual release or provisional text

mentioned in open issues.

text in Courier

font

code example

[phrase] In syntax diagrams, indicates that the enclosed values are optional

{ phrase1 | phrase2 } In syntax diagrams, indicates that multiple possibilities exists.

… In syntax diagrams, indicates a repetition of the previous expression

Table 3 Typographical conventions

The terminology used in this document may be somewhat different from other sources. The

chapter Glossary includes a list of often used terms with the explanation of their meaning in

this document.

1.5 Outstanding Issues

Following issues are outstanding at the time of the document release:

• Look and feel of the Cache monitor is not finalized yet

• Subscription mask usage is provisional

Page 4 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Introduction

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

2 Introduction

The SC supports message exchange between requesting application (client) and another

application providing a service (server). Caching of messages can be activated on every SC.

Cache coherency refers to the consistency of data stored in local caches of every SC node. The

coherency protocol described in following sections addresses the problem of maintaining the

consistency of all caches in a system of distributed shared memory. Therefore a coherence

model has been specified.

Figure 1 Topology & Caching in Service Connector

2.1 Cache coherence problem

The decision to cache or not cache a message is matter of an agreement between the client and

the server. Keeping message in cache until it expires is the most common lifecycle. However

lots of messages don’t have a known lifecycle or caching is dependent on other client actions.

Caching of such messages is only possible if there is a model to keep data consistent. This

means that when the data is changed on server node, cached messages must immediately be

updated in order to prevent clients to get obsolete data. Main target of the concept is to keep

time between “data change” and “cache update” as small as possible.

It is impossible to avoid the coherence problem completely. For a short period of time the data

in the cache may be older than the data on the server.

SC_CC Page 5

Service Connector Cache Coherency SC_CC-V1.3_E

Cache Coherence Model V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

3 Cache Coherence Model

Cache-Guardians are introduced to ensure cache consistency. They work on the

communication principles of a publish service. Any change of data on a server node, known as

cached content, must be published to a Cache-Guardian. By using the fan out mechanism data

update gets populated to all SC nodes and to the Clients. Updating the cache content is done

inside the SC and works according to 3.1.3.

Figure 2 Cache Coherence Model

3.1 Cache Coherence

3.1.1 Fundamental caching concept

As mentioned earlier, caching or not caching of data is an agreement of client and server. A

client indication (cacheId) for caching of a message is needed. Afterwards the server confirms

caching by returning the same cacheId. Indication of the client allows blocking other clients

with the same request. If the server denies returning the cacheId, data is not cached.

The granularity of cached messages exactly correlates to the SCMP messages sent over the

wire. Neither restructuring of messages nor modification of bodies will be done!

Page 6 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Cache Coherence Model

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Figure 3 Caching Concept – Caching data

Caching is completely based on the cacheId. The cache may be structured by structuring the

cacheId. The concept of used identifiers (cacheId) must be agreed between client and server.

The cache coherency model supports sending of Appendix, Removes and Initial Data

(Replacements). After registering (normal service register procedure) a Publish Server to a

Cache Guardian a client may subscribe to receive data. Any data published to a Cache

Guardian is populated to the clients and applied to the cache.

Figure 4 Caching Concept – Sending appendix and remove

SC_CC Page 7

Service Connector Cache Coherency SC_CC-V1.3_E

Cache Coherence Model V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

3.1.2 Cache-Guardian

The cache is divided into static and managed data. Static data is kept in cache until its

“expiration time” expires or a “remove” is received. Neither publishing appendices nor

replacements are allowed for static data.

For managed data the SC is responsible for handling the cache coherency. Appendices or

replacements may be applied. Managed data may also have an expiration time.

The SC Client API subscribes to a Cache-Guardian. Any data published to this Cache-

Guardian by the publish server will be populated up to the client. As long as an API user keeps

the Cache-Guardian active, data updates will automatically be received over a callback. At the

time the Cache-Guardian is inactive, data cached in SC is still consistent but client is not

informed about updates anymore. In order to use the coherence model correctly clients have

to establish connections to a Cache-Guardian as a first step!

Cache-Guardians are defined in the configuration file (sc.properties) of the connected SCs. The

cache is managed by Cache-Guardians. On a cascaded SC more than one Cache-Guardian

might be active. Messages get loaded by a session request of a client. The first Cache-Guardian

applying an appendix to a cached message is responsible to keep data consistent. Different

messages may be assigned to different Cache-Guardians.

A Cache-Guardian stops in following cases:

• No client is online (nobody is interested in updates)

• Connection is lost between client and SC (potential lack of updates)

• Connection is lost between SC and SC (potential lack of updates)

• Connection is lost between SC and Publish Server (potential lack of updates)

Stopping of a Cache-Guardian triggers a clean-up procedure in the cache module. Any message

the inactive Cache-Guardian has treated will be removed to avoid cache inconsistency. Next

client requesting a deleted message causes a new load process. In a sophisticated topology

the request will never end up on server level!

To send updates to a Cache-Guardian a publish server needs to complete the normal service

register procedure. Sent messages are populated up to the clients and applied to the caches on

the way.

The same update might be published from more than one publishing Server to different Cache-

Guardians. Cached messages are only updated by one Cache-Guardian. Other updates are

ignored.

As long as no large messages are published, it’s possible to have more than one server sending

updates to the same Cache- Guardian. Apparently sending the same update twice from each

server is nonsense and invalidates the cached message!

3.1.3 Interacting with the cache

Final decision of making a message cacheable is taken by the session server. SCMP V1.3

introduces a new header attribute cachingMethod, which allows the server interacting with the

cache. Above actions are performed by the Cache-Guardian depending on the values of

cachingMethod.

cachingMethod = “” or missing, static data

• Can only be set by session server in response message.

• Data is cached as static data (no updates possible) until expire time.

• Remove possible by publish server.

cachingMethod = “initial”

• Session server declares data in cache as managed data (updates possible).

• Append, initial (replace existing) or remove possible by publish server.

• An initial message published replaces correlating existing initial message and possible

appendices in cache.

Cache Structure

SC Client API

SC

Publish Server

Page 8 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Cache Coherence Model

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

cachingMethod = “append”, appendix

• Can only be set by publish server in publish message.

• Message is appended to cached initial message.

• Appendix ignored if no existing message found in cache.

• Appendix will be populated to the client.

• An Appendix might be a large message.

cachingMethod = “remove”

• Can only be set by publish server in publish message.

• Removes correlating initial message and possible appendices in cache.

• Remove will be populated to the client.

3.1.4 SCMP Version 1.3

SCMP V1.3 introduces new header attributes in order to support the coherency model.

Caching method “cmt”

Caching method indicates the process the cache has to complete when message arrives. Header

attribute has to be set by the session/publish servers. Following values are allowed:

• initial (marks data as managed data, causes replacement of existing data in cache)

• append (current message gets appended if base message is already in cache)

• remove (removes any existing data in cache)

Number of appendix “nra”

Header attributes used between clients and proxies to support loading appendix process.

Initial message stored in cache carries the number of appendices which were applied since

initial load.

Appendix number “anr”

Appendices are received in sequence. This header attribute indicates what position current

message takes in. This supports the process of loading appendices between clients and

proxies.

The publish message sent by the server has been extended by the header attribute cacheId (cid)

in order to publish appendix and deletions to the cache.

3.1.5 Caching identifiers

The caching module needs to structure messages and their parts and applied appendices. For

this purpose the cacheId is base identifier.

A given cache id identifies a message as a complete unit. Appendices are stored by adding an

index to the base cache id. For part messages a second index is concatenated.

Figure 5 Structure of caching identifiers

The cache id with appendix number zero and part number zero (e.g. 700/0/0) is called

initialDataCid.

Therefore using of the slash in cacheId by the user is forbidden! CacheId must be unique

over all services!

3.1.6 Clear managed data in cache

Managed data in caches are bound to a publish Server. Shutting down (unregister) or aborting a

publish server clears any managed data in the whole topology bound to this publish server.

SC_CC Page 9

Service Connector Cache Coherency SC_CC-V1.3_E

Cache Coherence - SC Client API V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

4 Cache Coherence - SC Client API

The SC Client API supports usage of the cache coherence model by the interface described in

following section.

4.1 SC Client API – Cache Coherence

Starting / Stopping Cache-Guardian

Method calls are synchronous and can be done after attaching SCClient successfully. Only one

Cache-Guardian can be started for a SCClient instance.

startCacheGuardian(String cacheGuardianName, int

operationTimeoutSeconds, SCSubscribeMessage scSubscribeMessage,

SCGuardianMessageCallback scGuardianCallback, int

receivePublicationTimeoutSeconds) throws SCServiceException,

SCMPValidatorException

• cacheGuardianName: Identifies the Cache-Guardian.

• operationTimeoutSeconds: Time until starting of Cache-Guardian aborts. (Operation

timed out)

• scSubscribeMessage: Subscribe message (see publish service for more details)

• scGuardianCallback: Callback to receive cache updates.

• receivePublicationTimeoutSeconds: Time to wait for completion of a receive

publication request.

Client needs to have an active Cache-Guardian in order to receive updates over the callback. If

no client is interested in updates (no Cache-Guardian active) no managed data will be cached.

Following method stops the cache subscription service in a shutdown scenario.

stopCacheGuardian(int operationTimeoutSeconds)

Receiving updates or removes

The callback to receive updates provides following methods:

// Inherited method gets called when initial data is received.

public abstract void receive(SCMessage reply);
// Inherited method gets called when an error shows up in communication process.

public abstract void receive(Exception ex);
// Method gets called when an appendix is received.

public abstract void receiveAppendix(SCAppendMessage appendix);
// Method gets called when a remove message is received.

public abstract void receiveRemove(SCRemovedMessage remove);

SCAppendMessage
Indicates that message is an appendix to an initial message.

SCRemovedMessage

Indicates that message has been removed from cache. The cacheId as a header attribute

identifies deleted message. It does not make sense to deliver content in this message.

SCManagedMessage

Type of message for managed cache message read by the SC Client API. Beside the initial

message in the body it contains an ordered list of Appendices as type of SCAppendMessage.

Page 10 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Cache Coherence - SC Client API

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Figure 6 SCMessage - Class Diagram

4.2 SC Client API – Loading of large messages

During loading of a message, client can receive a CACHE_LOADING exception. This can

happen in two cases:

a) The message is being loaded into cache by some other client.

b) The Cache-Guardian is appending a new large appendix to the message in cache.

Consequently the client may receive a CACHE_LOADING exception even it has received the

first parts of a large message already. In such case the client must retry retrieving the message.

SC_CC Page 11

Service Connector Cache Coherency SC_CC-V1.3_E

Monitoring and Troubleshooting V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

5 Monitoring and Troubleshooting

Basic concepts of SC monitoring and troubleshooting are described in SC_4_Operation_E.pdf.

Subsequent section covers monitoring and troubleshooting for the context of cache coherence.

5.1 Cache Coherence Logging

The cacheLogger is responsible for logging the events in context of caching.

Following events will be logged:

• New subscription on Cache-Guardian.

• New managed message received.

• New Appendix message received.

• New Initial message received, existing data replaced.

• New Remove messaged received, existing data completely removed.

• Appendix error because no corresponding “cacheId” found.

• Broken Cache-Guardian -> Managed data removed.

• No more subscriptions on Cache-Guardian -> Managed data removed.

5.2 Cache Coherence Monitor

Below mentioned information in the context of cache coherence model are visible in the Web

UI.

• Static data with expiration time.

• Managed data

o Creation time of managed message (initial message received)

o Available appendices, total number of

o Number of parts for appendix

o Cache-Guardian assigned to this message

• State of Cache-Guardian (active or inactive)

o Active or inactive

o Nr of subscriptions to the Cache-Guardian

The cache form shows the state of the cache.

Figure 7 WebUI - Cache Overview

Cache

Page 12 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Configuration of Cache-Guardian

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

6 Configuration of Cache-Guardian

The SC is configured with the configuration file sc.properties. More details are described in

SC_4_Operation_E.pdf. Configuration of a Cache-Guardian is also done in sc.properties.

6.1 Cache-Guardian Configuration

Names of the Cache-Guardians have to be listed as shown below. A remote node defines which

cascaded SC (only one) is publishing messages to a specific Cache-Guardian.

6.1.1 Configuration for Cache-Guardian

…...

serviceNames=cacheGuardian1

…...

cacheGuardian1.type=CacheGuardian

cacheGuardian1.enabled=true

…...

6.1.2 Configuration for cascaded Cache-Guardian (on SC proxy)

…...

serviceNames=sc1-cacheGuardian, sc2-cacheGuardian

…...

sc1-cacheGuardian.type=CacheGuardian

sc1-cacheGuardian.enabled=true

sc1-cacheGuardian.remoteNode=sc1

sc1-cacheGuardian.noDataIntervalSeconds=10

sc2-cacheGuardian.type=CacheGuardian

sc2-cacheGuardian.enabled=true

sc2-cacheGuardian.remoteNode=sc2

sc2-cacheGuardian.noDataIntervalSeconds=10

…...

SC_CC Page 13

Service Connector Cache Coherency SC_CC-V1.3_E

Best Practice V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

7 Best Practice

7.1 Proper separation of static and managed data

Chapter 3.1.2 and 3.1.3 explain the handling of managed data when a lack of updates occurs.

Basically the deletion of managed data by a Cache-Guardian it’s a normal procedure to avoid

cache coherency problem. For this reason the separation of static and managed data is very

important. Data without the need to be updated for a longer time period should be declared

static. Apparently the granularity of the messages has impact to the concept as well.

7.2 Use of the subscription mask

Like a publish service does a Cache-Guardian support the usage of the subscription mask.

Published updates will be broadcasted according to the subscription mask. It’s up to server and

clients agreement to wisely use it.

If server and client agree an ordered list of all cacheIds and use the particular positions to

identify the mask bit, client may precisely subscribe for the updates he needs. This also reduces

network traffic between proxies.

Page 14 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Glossary

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

8 Glossary

Term Explanation

Appendix Append message referring to an initial message.

Cache Coherency /

Coherence

Cache coherence (also cache coherency) refers to the consistency of data stored in multiple

caches of a shared resource

cacheId Message identifier in the cache. Must be unique in the cache. Controlled by client and server.

Cache-Guardian SC Module to guarantee data consistency in a cache. Responsible for the treatment of specific

messages in a cache.

Data Consistency Data consistency summarizes the validity, accuracy, usability and integrity of related data.

Initial message Base message appendices may be applied to.

Managed data Data in cache the SC takes care of consistency. Initial and append messages are managed data.

Static data Data valid until expiration time. No appendices able to apply to.

SC_CC Page 15

Service Connector Cache Coherency SC_CC-V1.3_E

Glossary V1.3

 Public

c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx Copyright © 2012 by STABILIT Informatik AG

Appendix

Page 16 SC_CC

SC_CC-V1.3_E Service Connector Cache Coherency

V1.3 Index

Public

Copyright © 2012 by STABILIT Informatik AG c:\stabilit\projects\eurex\sc\documents\sc_cc_e-v1.3.docx

Index

No index entries found.

